Estás navegando por el archivo de visualización.

Lo bueno, lo malo, lo geek. 10 librerías de código para resolver tus proyectos de visualización de datos

- el abril 22, 2019 en Tutoriales, Uncategorized

La visualización de datos es un arte y una ciencia, ya que, «una imagen vale más que mil líneas de datos». Existen librerías de código que hacen esta labor un poco más manejable.

¿Qué es una librería? ¿Cómo funciona?

Una librería es un kit de herramientas que contiene recursos que se pueden reutilizar. ¿No queremos empezar todo desde 0 verdad? Puedes hacer un llamado dentro de tu código a estas librerías para reutilizar aquellos recursos que necesites.

Para poder usar las siguientes librerías necesitas tener conocimientos previos de programación, pero si no los tienes,  puedes usar las siguientes herramientas que no necesitan de código.

4 factores a considerar antes de escoger una librería.

Antes de decidir cuál libreria utilizar es necesario tomar en cuenta los siguientes aspectos:

1.- El formato de los datos que vas a utilizar.

Los datos que deseas visualizar están en un .csv, en un .sql, en un pdf, etc. Las librerías trabajan con ciertos formatos por lo que debes buscar la que más se adecúe a tu situación.

2.- ¿Qué tan personalizable es?

Algunas librerías son restrictivas. Las más fáciles de aprender son más limitadas mientras que las más complejas son más personalizables.

3.- Los tipos de gráficos disponibles.

Revisa bien que la librería genere ese gráfico que estas buscando. 

4.- ¿Qué tan fácil de aprender es? ¿Se puede encontrar buena documentación sobre ella?

Sabemos que a veces necesitamos las cosas para ayer. Si estás en un apuro, no pierdas tu tiempo con algo complicado.  Si dispones de más tiempo hay una infinidad de cosas por descubrir en librerías complejas.

A continuación, las librerías 

 

D3.js

http://d3js.org

D3.js es una librería JavaScript para manipular documentos basados en datos. D3 utiliza HTML, SVG y CSS. D3 te da completamente el control: es muy customizable. Con ella, puedes crear desde gráficas sencillas como barras, hasta visualizaciones complejas, como gráficos relacionales o visualizaciones con mapas.

? Ventajas

  • Es una librería muy popular con una comunidad muy activa, lo que facilita el aprendizaje y te brinda respuestas rápidas a tus preguntas.
  • Es compatible con la librería Javascript React.
  • Existen varias librerías como C3.js o Metrics Graphics.js, que usan D3 en el back-end, lo cual reduce el trabajo para obtener buenos gráficos.
  • Sin dependencias y fácil de configurar.
  • D3 ofrece un increíble nivel de interactividad.

? Desventajas

  • La curva de aprendizaje es compleja. De esta manera, si lo que se deseas obtener es un gráfico sencillo, quizá esta no sea una buena opción.
  • Requiere librerías adicionales para exportar los gráficos.

 

Processing.js

http://processingjs.org/

Processing.js es una librería JavaScript que permite hacer visualizaciones de datos, arte digital, animaciones interactivas, gráficos educativos, videojuegos, etc. Trabaja con estándares web y cualquier complemento. Processing.js es el proyecto hermano de Processing.

? Ventajas

  • Processing.js está escrito en JavaScript y usa el elemento <canvas> de HTML5. Convierte tu código JavaScript y lo ejecuta.
  • Utiliza estándares web modernos.
  • Si sabes codificar en Processing no necesitas aprender Javascript.

? Desventajas

  • Processing.js utiliza el concepto de un directorio de datos, donde se encuentran las imágenes y otros recursos. Processing.js no incluye esto. Como resultado, siempre se debe proporcionar páginas de archivos (por ejemplo, imágenes).
  • Processing.js necesita tu ayuda al anular métodos de superclase sobrecargados. Esto quiere decir que cuando se hereden métodos de una clase, no se podrá sobrescribir.
  • Solo tiene dos modos de renderizado. Si estás pasando de Processing (el cual tiene muchos modos de Renderizado) a Processing.js, puede ser un poco problemático.

Google Charts

https://developers.google.com/chart/?hl=en

Google Charts es un servicio web que permite crear gráficos con la información que se le proporciona y es de fácil uso.  Es la librería que soporta Google Analytics, por lo que se puede usar en diferentes formatos como Json, Javascript y plugins que se pueden integrar con varios lenguajes de programación.

? Ventajas

  • Es personalizable. Puedes hacer tus propios gráficos para que combinen con tu web.
  • Se conecta a tus datos en tiempo real utilizando una variedad de herramientas y protocolos.
  • Compatibilidad con varios navegadores.
  • Puedes utilizar un código embebido Javascript en tu página web.
  • Es gratis
  • Puede generar los gráficos mediante Hojas de cálculo, bases de datos SQL, archivos CSV y hacer actualizaciones automáticas.

? Desventajas

  • No te da un procesamiento estadístico sofisticado.
  • Requiere una conexión de red.

Chartjs.js

http://www.chartjs.org/

Chart.js es una biblioteca de JavaScript que  permite dibujar diferentes tipos de gráficos responsive mediante el elemento canvas de HTML5.

? Ventajas

  • Es responsivo
  • Modular (Funcionalidades separadas)
  • Open Source, así puedes compartir y modificar el código fuente.
  • La documentación de chart.js  está bien organizada y provee información detallada de cada una de las características.

? Desventajas

  • Funciona mejor para algo rápido y simple. En caso de un proyecto complejo y más personalizado, esta librería no es la adecuada.

 

Vis.js

http://visjs.org/

Una librería de visualización dinámica web. La librería está diseñada para ser fácil de usar, manejar grandes cantidades de datos dinámicos y permitir la manipulación e interacción con los datos.

? Ventajas

  • Responsivo
  • Modular (Funcionalidades separadas)
  • Open Source
  • Vis.js  tiene un showcase de proyectos y documentación clara

? Desventajas

  • Lento: Cuando el gráfico tiene muchos detalles se necesita poner un mensaje “Cargando” para que los usuarios lo sepan.

Sigma.js

http://sigmajs.org/

Sigma es una librería JavaScript dedicada a las visualizaciones de datos. Facilita la publicación de gráficos de redes en páginas web y permite a los desarrolladores integrar su exploración en aplicaciones web.

? Ventajas

  • Bastante adaptable
  • Se puede agregar toda la interactividad deseada
  • Apto para principiantes.

? Desventajas

  • Cuando los nodos están conectados por varios bordes, estos se tienden a superponer y se necesita un plugin adicional para solucionar el problema.

 

Flot Charts

http://www.flotcharts.org/

Flot es una librería JavaScript para jQuery para visualizar datos, con un enfoque en el uso simple, aspecto atractivo y características interactivas.

? Ventajas

  • Fácil de usar y con amplia documentación disponible.
  • A la hora de hacer gráficos con ejes, admite múltiples ejes en Y(el eje vertical), lo cual es importante para poder correlacionar tendencias
  • Configuración Simple.

? Desventajas

  • Tiene un número limitado de tipos de gráficos que puedes hacer.

 

Chartist.js

https://gionkunz.github.io/chartist-js/

Chartist.js es una librería Javascript open-source con charts responsive. Genera los gráficos en SVG (al ser vectoriales son DPI-independientes). Es una librería muy sencilla de usar muy flexible y muy ligera  que ocupa sólo 10 Kb y no tiene dependencias.

? Ventajas

  • Gran flexibilidad al usar CSS
  • Utiliza formatos SVG para los gráficos
  • Completamente responsivo
  • Sin dependencias y fácil de configurar

? Desventajas

  • No todos los navegadores soportan sus animaciones.

 

Plot.ly

https://plot.ly/

Plotly es una librería Python que genera gráficos interactivos de calidad en línea. Ejemplos gráficos de líneas, diagramas de dispersión, gráficos de áreas, gráficos de barras, barras de error, diagramas de cajas, histogramas, mapas de calor, subtramas, ejes múltiples, gráficos polares y gráficos de burbujas.

? Ventajas

  • Gran soporte para ejes complejos y múltiples.
  • Herramientas integradas de zoom y filtrado en gráficos y mapas.
  • Tiene una documentación clara con opciones y ejemplos.
  • Gráficos interactivos.

? Desventajas

  • Los gráficos no funcionan en todos los navegadores.

 

Seaborn

http://seaborn.pydata.org/

Seaborn es una librería de visualización de datos para Python basada en matplotlib. Proporciona una interfaz de alto nivel para dibujar gráficos estadísticos atractivos e informativos.

? Ventajas

  • Genera gráficos atractivos visualmente.
  • Los gráficos tienen muchas características para  personalizar.
  • Documentación clara y muchos ejemplos disponibles.

? Desventajas

  • Si estás acostumbrado a la librería para python Matplotlib los parámetros en Seaborn son diferentes aunque Seaborn esté basado en Matplotlib, esto puede ser confuso.

Por Pamela Gonzáles

La visualización de datos, una ciencia y un arte

- el abril 22, 2019 en Guest posts

Alberto Cairo en su libro “The Truthful Art” describe la verdad como una variable continua, un espectro entre ser un absoluto mentiroso y ser una persona completamente veraz (en otras palabras un Dios). Partiendo de ello, la verdad es una aspiración, o mejor dicho un “arte”. Navegar en la incertidumbre es lo que nos toca a todos.

No obstante, la visualización de datos es además una ciencia. Nos exige escoger entre los métodos de codificación para transformar los datos en información valiosa que pueda aportar al conocimiento de ideas.

¿cómo llegamos a elegir?

 

No existe una respuesta definitiva. Una gran herramienta abierta y disponible que explica los distintos métodos de codificación que existen en la visualización es la herramienta  data viz Project .  Ahí se puede desagregar los gráficos por uso: comparación, correlación, distribución, data geo referencial, tendencias en el tiempo, etc.

 

Además la página tiene una sección (input) que expone las opciones de gráficas para  distintos formatos de datos. Por ejemplo, si queremos mostrar la correlación entre dos variables el método más utilizado (no el único) es el gráfico de dispersión (scatter plot).

 

Fuente: http://datavizproject.com/data-type/scatter-plot/

 

Por otra parte, si lo que se quiere es mostrar distintos valores y comparar entre sí, entonces nos serviría utilizar una gráfica de barras o líneas  (esta última en caso de que exista datos de carácter temporal).

 

Fuente: http://datavizproject.com/data-type/bar-chart-horizontal/

 

Seleccionar el método de codificación es la ciencia. Para convertirnos en buenos analistas por lo tanto necesitamos desarrollar una habilidad numérica. En mi experiencia este tipo de destreza, en el cual desempolvamos mucha estadística, no es algo que deba considerarse ajeno o para ciertas disciplinas, al contrario como cualquier otro aprendizaje es constante práctica. Para alguien que transitó de la área social y de humanidades, hacia los datos creo que esto es alcanzable para todo aquel que logre una dosis entre curiosidad, mucha, pero mucha disciplina.   

 

Amarrando lo anterior, no existe un solo camino para la visualización de datos, de hecho, es cada vez más importante el uso de ganchos para evitar el rebote (bouncing) como lo explica la editora del Guardian Us, Mona Chalabi, esto sucede cuando un lector o usuario decide abandonar el sitio y permanece por menos de diez segundos en la nota. Este fenómeno de rebote es cada vez más frecuente, sobre todo por lo difícil que resulta mantener la atención de lectores en un ambiente de abundancia.

 

A raíz de esto surgen nuevos mecanismos para innovar y hacer gráficas más atractivas, con el objetivo de resaltar los datos y la información pero conservando en gran medida los mismos métodos de visualización (enconding). En el ejemplo de Mona Chalabi se presenta la temática de la desigualdad utilizando como base lo que gana un hombre blanco en Estados Unidos para ilustrar de forma comparativa la diferencia entre esta cifra con otros grupos étnicas, segmentados por género. Lo significativo de este ejemplo es que en esencia la gráfica es de barras, pero el toque innovador es el uso del billete de dólar para ilustrar los valores.

 

fuente: http://monachalabi.com/illustrations/

 

El hecho de que la visualización sea un arte y una ciencia implica un diseño imperfecto, una verdad a medias. No obstante, esto no es un disuasivo, si no una motivación para emprender en el juego creativo de sumar significado y especialmente participar en una conversación con otros.

 

Por Sofía Montenegro

Flourish: visualizaciones fáciles en base a plantillas

- el julio 12, 2018 en Tutoriales

Esta herramienta de visualización te permite crear gráficos, mapas e historias interactivas en línea. Se basa en una serie de principios básicos que pretenden facilitar el trabajo para cualquier usuario:

  • No se requiere código solo conectar los datos con las librerías de plantillas con las que cuenta
  • Flexibilidad hacia arriba al permitirle a algunos usuarios poder crear plantillas privadas y a la medida
  • Storytelling animado para poder guiar a las audiencias a través de datos. Explicándolos ya sea a través de la publicación o a medida que interactúan.
  • Embeds y descargas ya que los proyectos se pueden incrustar en cualquier página, pero también se pueden descargar como archivos crudos o raw para otros usos.

Lee el resto de la entrada →

Siete visualizaciones de datos sobre migraciones y personas refugiadas

- el junio 21, 2018 en Guest posts, Noticias

La guerra, la violencia y la persecución en todo el mundo están empujando a huir de sus casas a un número de personas sin precedentes, según los últimos datos publicados por ACNUR, la Agencia de la ONU para los Refugiados.

Al terminar 2017 había 68,5 millones de personas desplazadas en el mundo. Es decir, una de cada 110 personas en el mundo se halla en situación de desplazamiento.

En este artículo, Aranzazú Cruz nos presenta siete  proyectos de visualización de datos, elaborados en los últimos tres años, que combinan diferentes narrativas digitales para visibilizar tanto las poblaciones desplazadas y refugiadas en el mundo como sus historias.

Lee el resto de la entrada →

¿Cómo sería una visualización de datos feminista?

- el mayo 11, 2018 en Experiencias, Guest posts

Ante el peligro de que  la visualización de datos se use como una herramienta para la desinformación y la exclusión, Catherine D’Ignazio reflexiona sobre qué podemos aprender del feminismo para hacer mejores representaciones visuales con datos.

Lee el resto de la entrada →

Mezclando cronologías y gráficos lineales (o de fiebre) con StorylineJS

- el marzo 27, 2018 en Tutoriales

Los datos no se explican por sí mismos. Esta herramienta te permite hacer anotaciones en los diferentes puntos de una serie de tiempo. Como una cronología, puedes ir comentando o explicando una serie de puntos en un gráfico de líneas.

Lee el resto de la entrada →

Haciendo mapas con ArcGIS en línea

- el octubre 12, 2017 en Guest posts, Tutoriales

Desde Bogotá D.C., Andrés Forero  , especialista en GIS y datos geográficos, nos envía este post como parte de una serie de tutoriales  sobre datos geográficos y cómo podemos aprovecharlos desde distintos software para su edición y publicación.

Lee el resto de la entrada →

¿Cómo elegir gráficos según las seis W del periodismo?

- el agosto 9, 2017 en Fuentes de datos, Guest posts

Screen_Shot_2017_08_09_at_1_44_48_PM

Este post es una contribución de Hassel Fallas, periodista costarricense basada en análisis de datos, quien lo escribió originalmente para su sitio La Data Cuenta. Escuela de Datos replica este y otros contenidos de La Data Cuenta con autorización de la autora.

 

 


Elegir el gráfico más apropiado para contar tu historia con datos es una de las decisiones más cuidadosas que como periodista debes enfrentar.

¿Por qué? Simplemente  los gráficos no son accesorios para que un artículo se vea “más lindo”. Si los gráficos no cuentan una historia en sí mismos, sino son claros, comprensibles, usables, capaces de informar y de generar conocimiento- de un vistazo- los convertirás en una pérdida de tiempo y de espacio.

Tampoco los puedes seleccionar basándote en tu gusto personal y criterios estéticos, aconseja Alberto Cairo en su libro El arte funcional.

Una de las mejores formas de elegirlos es aplicando la lógica de las 6 W, las mismas que aprendiste desde el inicio de tu carrera para darle estructura a una noticia.

Esa es la idea de Fréderik Ruys, diseñador y periodista basado en análisis de datos en Holanda, quien creó este sistema que llama Taxonomía del infográfico, una combinación de preguntas básicas y la forma más recomendable de responderlas de manera visual.

Su infografía ha sido de tanta utilidad en mi trabajo como periodista de datos que la traduje al español-muy libremente- para quienes deseen emplearla como material de consulta.

Taxonomi_a_de_visualizacio_n

La puedes descargar en PDF aquí

Si te es útil, ¡compártela!

 

Cómo hacer visualizaciones de datos con Tableau

- el diciembre 29, 2016 en Tutoriales, Uncategorized

Mi incursión en Tableau surgió como una oportunidad. Hace dos años, trabajaba en una Organización No Gubernamental (ONG) en El Salvador especializada en el tema de mujeres. Mi exjefe estaba por comprar un software especializado en visualizar datos. Se me acercó y me preguntó: «¿Le interesaría aprenderlo?» Dudé. No mucho, pero dudé. Y, pese a las dificultades iniciales, acepté el reto y heme aquí intentando que la gente lo ame tanto como yo lo hago.

De ahí, cada que puedo recomiendo Tableau, una herramienta creada por tres entusiastas de los datos en la Universidad de Stanford, como un excelente aliado en visualización cuando carecemos de equipos multidisciplinarios (conformado por visualizadores, infografistas, diseñadores, entre otros), pues se sustenta en el concepto one man band para contar cierto tipo de temáticas con gráficos. ¡Ojo! Tiene una versión pagada, pero si trabajas en una universidad o lo utilizas para fines académicos puedes solicitar una copia GRATUITA para dos años y válida para ser instalada en dos computadoras acá: http://www.tableau.com/academic/students.

Por eso, hoy quiero compartir contigo cómo puedes hacer visualizaciones de mapas y gráficas que, en su momento, impactaron al funcionario salvadoreño con un set de datos que trabajé durante mi paso por dicho proyecto, enfocado en la problemática de mujeres salvadoreñas deportadas de México y Estados Unidos, un fenómeno que casi no había sido analizado ni comprendido del todo en mi país. Sin más, zambullámonos en el vasto y fascinante mundo de Tableau, ¿sí?

¡Bellísimo así!

Es lo primero que dirás al abrir la nueva versión de Tableau, pues su edición 10 ha apostado por una interfaz más intuitiva para quien se anime a explorar el noble arte de la visualización. Te lo digo yo porque vengo de donde asustan, ya que me tocó aprender a utilizarlo en su versión 7. Como puedes ver en el menú de la izquierda, puedes conectar tus bases desde un archivo (ya sea .xls, .csv, .tsv, entre otros) hasta aquellas que tengas trabajadas en un servidor (MySQL, Oracle Server, etcétera).

image00

 

 

¡Comencemos! Conectaremos mi archivo con la opción Conectar a un archivo > Excel. Buscaremos la base trabajada en mi computadora y Tableau se tomara unos momentos para procesarla. ¡Voilá! Tendremos una previsualización para que podamos revisar la data antes de trabajar con ella. Esta deberías verla de la siguiente forma:

image12

El trabajo de carpintería con una base de datos se vuelve fundamental, pues dicho set se encuentra preparado para ser leído por un programa de computadora como Tableau con el objetivo de que puedan realizarse todas las conexiones y relaciones necesarias para analizar datos que nos hagan ver más allá de lo evidente (Thunder, Thunder,Thundercats, ¡oooooooooooh!).

A ojo de buen cubero, puedes ver que Tableau automáticamente establecer una diferenciación entre aquellos valores que son textos y números; no puede establecer que los años, las latitudes y longitudes son variables que pueden trabajarse de forma diferenciada en el caso de una visualización.

Para cambiarlas, haz clic sobre el ícono Numeral (#) que aparece arriba de dichas categorías > Rol geográfico > Latitud/Longitud. Finalizado este paso, verás que ha cambiado el ícono Numeral (#) por un globo terráqueo. ¡Eso significa que funcionó! ¡Yey! De igual forma, sigue los mismos pasos para la variable Ano y cambíalo por una Cadena que nos servirá para analizar los años de forma continua.

image02

 

 

 

 

¡A trabajar! Demos clic en el recuadro naranja denominado Hoja 1 y sigamos el camino datero hacia nuestro canvas en blanco. Qué belleza, ¿no? Tableau establece una clara diferenciación entre cada aspecto clave de visualización (filtros, marcas, gráficos, hojas, dashboards, entre otros) y, además, simplifica el trabajo mediante el arrastre de variables hacia determinados campos o con solo darle doble clic a las medidas y dimensiones podemos verlas desplegadas en nuestro canvas.

image23

 

Comencemos con un mapa. Para desplegarlo, haz doble clic en Longitud y Latitud; te aparecerá un punto geográfico que localizará a El Salvador en un mapa de OpenStreet. Como necesitamos visibilizar a los 262 municipios del país para visibilizar la temática de las mujeres repatriadas, arrastremos las Medidas Departamento y Municipio hacia la opción Detalle del Menú Marcas. ¡Listo!

image21

¿Ves? Ya podemos ver cómo cambia nuestra forma de visualizar mapas. Gracias a Tableau, podemos estilizar colores y tamaños de los puntos con cantidades o tasas; arrastremos Municipio y Tasa por cada 100,000 habitantes a las opciones Color y Tamaño del menú Marca respectivamente. Así, podemos mostrar la gravedad, repitencia de un fenómeno u otra problemática nacional.

image16

 

 

Pero, ¿qué pasa si no deseas los colores y tamaños preestablecidos de Tableau? Tableau te ofrece la maravillosa ventaja de arreglarlos a tu gusto en las opciones del menú Marca. Acá, yo cambié un poco el tamaño y utilicé la paleta de color púrpura de la herramienta. Para modificarlo, hice lo siguiente: di clic a la opción Color del Menú Marca > Editar Colores > Seleccionar paleta de colores > Púrpura > Asignar Paleta > Aceptar. ¡Y me quedó así!

ya

 

¡Momento! ¡Falta algo! Exacto: limpiar la descripción emergente. Aún contempla la Latitud y Longitud, así como otras variables útiles para describir el fenómeno en cada localidad. Dado que nos interesa que la gente se familiarice y lo entienda de un vistazo, arrastremos las siguientes Medidas a la opción Descripción emergente (Tooltip) del Menú Marcas: Forma de repatriacion y Cantidad.

Por las demás variables, ¡tranquilo! Ya se encuentran contempladas en dicho apartado. Para limpiar la suciedad persistente en el Tooltip puedes editar y condensar la información a lo más importante. ¡Ojo! No abuses de la paleta de colores, pues tu historia puede difuminarse ante una paleta de colores infinita e innecesaria. Finalizada tu edición, dale clic a Aceptar. ¡Primera hoja lista!

Do the evolution!
Como la rola de Pearl Jam, esta herramienta te ayuda a ver cómo evoluciona un fenómeno con gráficas de líneas o áreas. Para ver este caso, hagamos lo siguiente. Agreguemos una nueva hoja a nuestro libro de trabajo, haciendo clic en el botón inferior derecho, ubicado cerca de la hoja Mapa. En ella, arrastraremos la dimension de los años y la medida Cantidad a los apartados de columnas y filas respectivamente. ¿Ves cómo se despliega ahora?

image13

 

 

 

 

 

 

 

 

Maticemos el grado de intensidad de la gráfica arrastrando la medida Cantidad en la opción Color del menú Marcas y editemos el color a púrpura. Así, daremos aire de familia a nuestra visualización. Ahora bien, para vislumbrar las cantidades, arrastremos la medida Cantidad al campo Etiqueta del menú Marca y así podrás ver cómo se presentó el fenómeno en general durante tres años.

 

 

 

 

 

 

 

 

 

 

 

Si eres curioso como yo, notarás que al pasar el cursor sobre los puntos, verás que la Descripción emergente no tiene lo que necesitamos. Por eso, arrastraremos las siguientes variables a Descripción emergente: Departamento y Forma de repatriacion. Nuevamente, condensemos y editemos para resaltar lo importante. Así, tendremos un before and after espectacultar. Maravilloso, ¿verdad?

image07

 

 

 

 

 

 

 

 

 

 

 

Entre el mapa y el gráfico, ¿notaste elementos comunes que pueden servir para filtros? Yo también. Sazonemos nuestras hojas con ellos para que sean aplicables en un dashboard. Arrastremos las dimensiones Departamento y Forma de repatriación al campo Filtros, ubicado arriba del menú Marca. Seleccionemos todas sus variables y apliquémoslas a ambas hojas. Para el caso de los años, solo se lo aplicaremos al mapa, dado que ya contamos con un gráfico que muestra la evolución en el tiempo.

image10

 

 

 

 

 

 

 

 

 

 

 

image06

 

 

 

 

 

 

 

 

 

 

 

image04

 

 

 

 

 

 

 

 

 

 

 

¿Y si hacemos un muñeco?

¡Llegó el momento! Creemos un dashboard. Este es un elemento que contendrá nuestras hojas y otros elementos de interés para nuestra visualización. Accedamos a él con el botón Nuevo dashboard, ubicado cerca del botón Nueva hoja. ¡Voilá! Un canvas con la posibilidad de visibilizar el fenómeno de mujeres repatriadas a El Salvador. Arrastremos nuestras dos hojas para que nos queden así:

image11

 

 

 

 

 

 

 

 

 

 

 

Ordenemos la casa. Coloquemos la cantidad de tasas como valor flotante. Para hacerlo, haremos clic derecho sobre la flecha desplegable hacia abajo del contenedor de tasas y seleccionaremos la opción Flotante. Deshágamonos de las leyendas de colores de los municipios haciendo clic en la X que aparece en su contenedor. Finalizado esto, convoquemos los filtros a escena. Haremos clic sobre la flecha negra desplegable en el contenedor de la hoja Mapa y seleccionaremos la opción Filtro > Ano, Forma de repatriación y Departamento. Estos aparecerán de la siguiente forma:

image18

 

 

 

 

 

 

 

 

 

 

 

¡Yo sé! Aún no se ve lindo nuestro dashboard. Coloquemos dos filas imaginarias arriba de nuestro mapa. ¿Cómo? Utilicemos la opción Objetos > En blanco para colocarlas en el dashboard. Al principio, nos saldrán fuera de lugar, pero podemos arrastrarlas para acomodarlas en lo más alto de nuestra visualización. Una vez posicionadas, necesitamos redactar un titular y un indicador que guié a nuestro usuario a darse un vueltín por nuestra visualización.

Hagámoslo realidad haciendo clic en la opción Texto del Menú Objetos. Posteriormente, posicionemos el titular en la primera fila y el indicador en la siguiente. Terminado esto, elimina la fila del titular y despliega el titular en toda la fila; con el indicador ocurre lo contrario, dado que deberás arrastrar los filtros posterior a él. Acómodalos y obtendrás como resultado lo siguiente:

image01

 

 

 

 

 

 

 

 

Prescindamos del titular del Mapa. Haremos clic sobre la flecha desplegable del contenedor Mapa y le quitaremos el cheque a la opción Título. ¡Se fue, se fue! Ahora, pulamos el títular de nuestra gráfica. ¿Cómo? Hagamos clic sobre su titular y redactemos: Cantidad de mujeres repatriadas en. Finalizado eso, haremos clic en Insertar y coloquemos las siguientes variables en nuestro titular: ATTR(Departamento) – ATTR(Forma de repatriacion). Así, le daremos interactividad una vez el usuario se valga de los filtros para analizar la información. image14

 

 

 

 

 

 

 

 

 

 

 

 

image08

 

 

 

 

 

 

 

 

 

 

 

Ah, ¡lo olvidaba! También, puedes formatear el título para darle el mismo realce que al titular de nuestro dashboard. ¡Ojo! Siempre, siempre, siempre cita la fuente de dónde obtuviste la información, dado que eso te será de mucha utilidad para respaldar de dónde fue extraída y qué otras consideraciones tomaste en cuenta al momento de analizar la data, como el caso de las tasas.

 

¿Con quién se queda el Tableau?

Supongamos que ya tenemos nuestra visualización como la queremos. Acá, solo nos queda publicarlo en línea. Para eso, Tableau nos pide que elaboremos un extracto de nuestra información como respaldo. ¡Manos a la obra! Iremos a la barra de Menús > Datos > Extraer Datos. Acá, aparecerá un menú donde podremos añadir todas las variables clave que se extraerán de tu data.

image25

 

 

 

 

 

 

 

 

 

 

 

 

Haremos clic a la opción Añadir y seleccionaremos Año. A continuación, aparecerá una ventana emergente donde estarán todos los años. Escogélos todos y daremos clic en el botón Aceptar. Seguiremos el mismo procedimiento para el resto de variables; finalizado este procedimiento, crearemos el extracto dando clic en el botón Extracto.

image19

 

 

 

 

 

 

 

 

 

 

 

image03

 

 

 

 

 

 

 

 

 

 

 

image19

 

 

 

 

 

 

 

 

 

 

 

¡Ya casi, ya casi! Ahora vamos a la opción Servidor de la barra de menú. Escogeremos Tableau Public > Guardar en Tableau Public como… En cuanto hagamos eso, nos aparecerá una ventana donde ingresaremos nuestro correo electrónico y nuestra clave para acceder a nuestra cuenta. Si no cuentas con una, ¡tranquilo! Esta herramienta te permite crearla durante este proceso.

image17

 

 

 

 

 

 

 

 

 

 

 

 

image15

 

 

 

 

 

 

 

 

 

 

 

 

image05

 

 

 

 

 

 

 

 

 

 

 

Tan pronto como ingresemos nuestros datos, nos pedirá que redactemos el nombre de nuestra visualización. En este caso, le puse Mujeres repatriadas en El Salvador. Damos clic al botón Guardar. La herramienta procesará… ¡Voilá! ¡Nuestro Tableau aparecerá desplegado en nuestro perfil público de Tableau, donde podemos editarle detalles, como una breve descripción, qué tipo de formatos autorizamos a la herramienta para que la gente pueda descargar, entre otras utilidades.

image20

 

 

 

 

 

 

 

 

 

 

 

¿Tableau o no Tableau? ¡Esa es la cuestión!

Mi recomendación es que apuestes por Tableau. Y, si tu medio de comunicación u organización puede adquirirlo, mucho que mejor, pues una clara diferencia entre la versión gratuita y la versión pagada es que tienes mejor cobertura de seguridad, acceso al servidor pagado (con mejor seguridad que el público) y mayor lectura de líneas de registro y formato de apertura de ciertos archivos.

Sumado a eso, concuerdo con Ojo Público (2016) al garantizarte que la creación de filtros permite que los usuarios consulten y obtengan resultados personalizados en datos. Y, sobre todo, el hecho de que no se necesita saber programación para usarla, pues, al descubrir que algunas de sus funcionalidades provienen de herramientas como Excel, la cosa pinta mucho que mejor.

¡Eso sí! “Sobre advertencia, no hay engaño”. Actualmente, la mayoría de información sobre esta herramienta se encuentra en inglés, su foro de atención al usuario se tarda un poco (¡o un siglo!) en responder y algunos gráficos, como el mapa de relleno, dejan mucho que desear cuando son regiones o naciones foráneas a Estados Unidos…

Aun así, es una herramienta que promete mucho en su nueva actualización, a la que vale la pena acercarse por facilitarte un poco más las cosas a la hora de visibilizarse historias con datos, así como el grado de interactividad que le brinda al usuario y, si ya con esto no logro convencerte, te reto a que la pruebes y nos compartas qué te parece y que no debajo de esta publicación o en nuestro Twitter (@EscueladeDatos). Cheers!

Libro: Visualización de la información

- el julio 29, 2015 en Experiencias


 

En Escuela de Datos, compartimos casos de uso de datos en América Latina y España desde distintas trincheras. Hoy compartimos la historia de Ignasi Alcalde, miembro de OKFN España y autor de Visualización de la información: de los datos al conocimiento.


 

 

IgnasiAlcalde“Mi interés en el open data viene de hace unos 5 años, cuando empiezo a utilizarlos como materia prima para proyectos de infografía y visualización de datos. Para mí el objetivo es fomentar el uso y la reutilización de la información procedente de la administración como fuente de transparencia informativa y de servicio, participación ciudadana; como fuente de ideas y prototipos, para promover valor económico la innovación y los proyectos emprendedores”.

 

Ignasi Alcalde es consultor en gestión de conocimiento y docente universitario en Cataluña, España; región en la que ha habido avances grandes en la publicación de conjuntos de datos; en la que hay una comunidad datera asentada y muy activa; y que, asimismo, se encuentra en una situación política delicada donde justo son necesarias la transparencia y la participación ciudadana. A estas causas busca abonar el movimiento de apertura de datos.

¿Pero es suficiente abrir datos por abrirlos? Ignasi identifica varios retos en este movimiento, y en particular, del lado del uso, el siguiente:

 

“Hay que preocuparnos por las posibles consecuencias derivadas del uso de datos que contienen errores y la responsabilidad que eso conlleva.

El trabajo con datos, su reutilización y la extracción de información y conocimiento no es un tema trivial. Parece que la administración todavía no está completamente preparada para la reutilización; da la impresión de que la ciudadanía y el sector empresarial PyME tampoco lo están. Se requieren nuevas competencias profesionales para generar valor con los datos desde la obtención de los mismos”.

visualizacion-datos-3

Es aquí que entra la trinchera escogida por Ignasi para participar en esta lucha: un libro. Visualización de la información: de los datos al conocimiento.

 

“Quise resumir mis dos últimos años de docencia. Quería aglutinar todo el material que tenía, sobre todo teniendo en cuenta que hay muy pocos escritos en español sobre este tema y existía la necesidad de editar material en la lengua hispana. La idea es despertar la curiosidad de las personas con respecto a esta disciplina; su historia, visiones, alcances y herramientas. Actualmente se están abriendo nuevas oportunidades laborales en este campo y busque reflexionar sobre las competencias que debe tener un profesional para dedicarse a este trabajo.

Este libro es para cualquier persona que quiera representar la información de forma más visual, aprovechando las formas gráficas para facilitar su comprensión y así transmitir conocimiento, desde las historias más fáciles a las más complejas. Se trata de una obra introductoria y breve, a un precio asequible para que cualquier persona pueda adquirirla. Además, una de las áreas pioneras del libro es que he explorado los perfiles profesionales que están apareciendo en este sector, explicando como podrían ser las nuevas profesiones del trabajo con datos”.

 

La apuesta de Ignasi es clara: debemos fomentar el uso y la reutilización de la información procedente de la administración, y el libro es un buen formato para interesar a las y los nuevos en estos temas, y construir capacidades en quienes ya están convencidos.

Puedes encontrar más información en Editorial UOC.

 

¡Gracias a Ignasi Alcalde por contarnos su historia! ¿Tienes tú una que quieras compartir? Puedes contactarnos en Twitter o Facebook.