Estás navegando por el archivo de Uncategorized.

Lo bueno, lo malo, lo geek. 10 librerías de código para resolver tus proyectos de visualización de datos

- el abril 22, 2019 en Tutoriales, Uncategorized

La visualización de datos es un arte y una ciencia, ya que, «una imagen vale más que mil líneas de datos». Existen librerías de código que hacen esta labor un poco más manejable.

¿Qué es una librería? ¿Cómo funciona?

Una librería es un kit de herramientas que contiene recursos que se pueden reutilizar. ¿No queremos empezar todo desde 0 verdad? Puedes hacer un llamado dentro de tu código a estas librerías para reutilizar aquellos recursos que necesites.

Para poder usar las siguientes librerías necesitas tener conocimientos previos de programación, pero si no los tienes,  puedes usar las siguientes herramientas que no necesitan de código.

4 factores a considerar antes de escoger una librería.

Antes de decidir cuál libreria utilizar es necesario tomar en cuenta los siguientes aspectos:

1.- El formato de los datos que vas a utilizar.

Los datos que deseas visualizar están en un .csv, en un .sql, en un pdf, etc. Las librerías trabajan con ciertos formatos por lo que debes buscar la que más se adecúe a tu situación.

2.- ¿Qué tan personalizable es?

Algunas librerías son restrictivas. Las más fáciles de aprender son más limitadas mientras que las más complejas son más personalizables.

3.- Los tipos de gráficos disponibles.

Revisa bien que la librería genere ese gráfico que estas buscando. 

4.- ¿Qué tan fácil de aprender es? ¿Se puede encontrar buena documentación sobre ella?

Sabemos que a veces necesitamos las cosas para ayer. Si estás en un apuro, no pierdas tu tiempo con algo complicado.  Si dispones de más tiempo hay una infinidad de cosas por descubrir en librerías complejas.

A continuación, las librerías 

 

D3.js

http://d3js.org

D3.js es una librería JavaScript para manipular documentos basados en datos. D3 utiliza HTML, SVG y CSS. D3 te da completamente el control: es muy customizable. Con ella, puedes crear desde gráficas sencillas como barras, hasta visualizaciones complejas, como gráficos relacionales o visualizaciones con mapas.

? Ventajas

  • Es una librería muy popular con una comunidad muy activa, lo que facilita el aprendizaje y te brinda respuestas rápidas a tus preguntas.
  • Es compatible con la librería Javascript React.
  • Existen varias librerías como C3.js o Metrics Graphics.js, que usan D3 en el back-end, lo cual reduce el trabajo para obtener buenos gráficos.
  • Sin dependencias y fácil de configurar.
  • D3 ofrece un increíble nivel de interactividad.

? Desventajas

  • La curva de aprendizaje es compleja. De esta manera, si lo que se deseas obtener es un gráfico sencillo, quizá esta no sea una buena opción.
  • Requiere librerías adicionales para exportar los gráficos.

 

Processing.js

http://processingjs.org/

Processing.js es una librería JavaScript que permite hacer visualizaciones de datos, arte digital, animaciones interactivas, gráficos educativos, videojuegos, etc. Trabaja con estándares web y cualquier complemento. Processing.js es el proyecto hermano de Processing.

? Ventajas

  • Processing.js está escrito en JavaScript y usa el elemento <canvas> de HTML5. Convierte tu código JavaScript y lo ejecuta.
  • Utiliza estándares web modernos.
  • Si sabes codificar en Processing no necesitas aprender Javascript.

? Desventajas

  • Processing.js utiliza el concepto de un directorio de datos, donde se encuentran las imágenes y otros recursos. Processing.js no incluye esto. Como resultado, siempre se debe proporcionar páginas de archivos (por ejemplo, imágenes).
  • Processing.js necesita tu ayuda al anular métodos de superclase sobrecargados. Esto quiere decir que cuando se hereden métodos de una clase, no se podrá sobrescribir.
  • Solo tiene dos modos de renderizado. Si estás pasando de Processing (el cual tiene muchos modos de Renderizado) a Processing.js, puede ser un poco problemático.

Google Charts

https://developers.google.com/chart/?hl=en

Google Charts es un servicio web que permite crear gráficos con la información que se le proporciona y es de fácil uso.  Es la librería que soporta Google Analytics, por lo que se puede usar en diferentes formatos como Json, Javascript y plugins que se pueden integrar con varios lenguajes de programación.

? Ventajas

  • Es personalizable. Puedes hacer tus propios gráficos para que combinen con tu web.
  • Se conecta a tus datos en tiempo real utilizando una variedad de herramientas y protocolos.
  • Compatibilidad con varios navegadores.
  • Puedes utilizar un código embebido Javascript en tu página web.
  • Es gratis
  • Puede generar los gráficos mediante Hojas de cálculo, bases de datos SQL, archivos CSV y hacer actualizaciones automáticas.

? Desventajas

  • No te da un procesamiento estadístico sofisticado.
  • Requiere una conexión de red.

Chartjs.js

http://www.chartjs.org/

Chart.js es una biblioteca de JavaScript que  permite dibujar diferentes tipos de gráficos responsive mediante el elemento canvas de HTML5.

? Ventajas

  • Es responsivo
  • Modular (Funcionalidades separadas)
  • Open Source, así puedes compartir y modificar el código fuente.
  • La documentación de chart.js  está bien organizada y provee información detallada de cada una de las características.

? Desventajas

  • Funciona mejor para algo rápido y simple. En caso de un proyecto complejo y más personalizado, esta librería no es la adecuada.

 

Vis.js

http://visjs.org/

Una librería de visualización dinámica web. La librería está diseñada para ser fácil de usar, manejar grandes cantidades de datos dinámicos y permitir la manipulación e interacción con los datos.

? Ventajas

  • Responsivo
  • Modular (Funcionalidades separadas)
  • Open Source
  • Vis.js  tiene un showcase de proyectos y documentación clara

? Desventajas

  • Lento: Cuando el gráfico tiene muchos detalles se necesita poner un mensaje “Cargando” para que los usuarios lo sepan.

Sigma.js

http://sigmajs.org/

Sigma es una librería JavaScript dedicada a las visualizaciones de datos. Facilita la publicación de gráficos de redes en páginas web y permite a los desarrolladores integrar su exploración en aplicaciones web.

? Ventajas

  • Bastante adaptable
  • Se puede agregar toda la interactividad deseada
  • Apto para principiantes.

? Desventajas

  • Cuando los nodos están conectados por varios bordes, estos se tienden a superponer y se necesita un plugin adicional para solucionar el problema.

 

Flot Charts

http://www.flotcharts.org/

Flot es una librería JavaScript para jQuery para visualizar datos, con un enfoque en el uso simple, aspecto atractivo y características interactivas.

? Ventajas

  • Fácil de usar y con amplia documentación disponible.
  • A la hora de hacer gráficos con ejes, admite múltiples ejes en Y(el eje vertical), lo cual es importante para poder correlacionar tendencias
  • Configuración Simple.

? Desventajas

  • Tiene un número limitado de tipos de gráficos que puedes hacer.

 

Chartist.js

https://gionkunz.github.io/chartist-js/

Chartist.js es una librería Javascript open-source con charts responsive. Genera los gráficos en SVG (al ser vectoriales son DPI-independientes). Es una librería muy sencilla de usar muy flexible y muy ligera  que ocupa sólo 10 Kb y no tiene dependencias.

? Ventajas

  • Gran flexibilidad al usar CSS
  • Utiliza formatos SVG para los gráficos
  • Completamente responsivo
  • Sin dependencias y fácil de configurar

? Desventajas

  • No todos los navegadores soportan sus animaciones.

 

Plot.ly

https://plot.ly/

Plotly es una librería Python que genera gráficos interactivos de calidad en línea. Ejemplos gráficos de líneas, diagramas de dispersión, gráficos de áreas, gráficos de barras, barras de error, diagramas de cajas, histogramas, mapas de calor, subtramas, ejes múltiples, gráficos polares y gráficos de burbujas.

? Ventajas

  • Gran soporte para ejes complejos y múltiples.
  • Herramientas integradas de zoom y filtrado en gráficos y mapas.
  • Tiene una documentación clara con opciones y ejemplos.
  • Gráficos interactivos.

? Desventajas

  • Los gráficos no funcionan en todos los navegadores.

 

Seaborn

http://seaborn.pydata.org/

Seaborn es una librería de visualización de datos para Python basada en matplotlib. Proporciona una interfaz de alto nivel para dibujar gráficos estadísticos atractivos e informativos.

? Ventajas

  • Genera gráficos atractivos visualmente.
  • Los gráficos tienen muchas características para  personalizar.
  • Documentación clara y muchos ejemplos disponibles.

? Desventajas

  • Si estás acostumbrado a la librería para python Matplotlib los parámetros en Seaborn son diferentes aunque Seaborn esté basado en Matplotlib, esto puede ser confuso.

Por Pamela Gonzáles

¿Qué son los sistemas de coordenadas cartográficas?

- el abril 1, 2019 en Uncategorized

¿Qué es lo que hay que considerar cuando queremos hacer un mapa? Te explicamos los sistemas de coordenadas cartográficas, cómo funcionan, qué sistemas de proyección existen y cómo influencian tus trabajos con geodatos.

Lee el resto de la entrada →

Así es como Latinoamérica va a celebrar el #OpenDataDay

- el marzo 1, 2019 en Uncategorized

Un año más, el Día de los Datos Abiertos celebra iniciativas de transparencia en todo el mundo, con más de 200 eventos programados. En Latinoamérica, SocialTIC y  Escuela De Datos se une a la celebración en 4 países a través de expediciones de datos, charlas, talleres, meet-ups y rallys dateros.

A la vez,  en otros países de la región organizaciones amigas trabajarán alrededor de un mismo objetivo: concientizar sobre la necesidad de abrir los datos públicos para que sean accesibles y puedan ser reutilizados para generar valor.

Este sábado 2 de marzo es el Día de los Datos Abiertos y te compartimos algunos de los eventos programados para celebrarlo. Tú también puedes unirte al evento más cercano y a la celebración mundial usando el hashtag #ODD19.

Lee el resto de la entrada →

¿Qué le podemos aprender al Mundial de la igualdad?

- el julio 6, 2018 en Uncategorized

Durante el Mundial de Fútbol Rusia 2018 una iniciativa buscó llevar un poco de esa atención por los países y sus enfrentamientos hacia una cancha diferente: la de los derechos y la búsqueda de equidad. El Mundial de la Igualdad logró vincular a varias iniciativas de datos de la región y aprovechó la coyuntura para posicionar un tema.

Hablamos con Verónica Toro, parte del equipo colombiano de DataSketch que coorganizó este proyecto para conocer más sobre el proceso de este boom mundialista.

Lee el resto de la entrada →

Formatos de aprendizaje: ¿Cómo escoger mejor qué actividad hacer?

- el junio 15, 2018 en Uncategorized

La red mundial de Escuela de Datos es un equipo conformado por más de 14 organizaciones o capítulos regionales que trabajan en conjunto para organizar cientos de actividades de enseñanza sobre datos: desde talleres, hasta cursos en línea; campamentos de verano o conferencias internacionales.

El éxito de este enfoque en red no es algo casual: como equipo hemos dedicado mucho esfuerzo a repensar nuestras actividades, nuestros enfoques y nuestros formatos.

Cuando comenzamos, en 2013, nuestro enfoque era muy masivo y privilegiaba los cursos masivos en línea (MOOCs), y con el paso de los años no hemos abandonado eso, pero hemos trabajado mucho más en persona para alcanzar a los periodistas y organizaciones sociales a las que buscamos apoyar.

La matriz de alfabetización de datos

En equipo, elaboramos una matriz que resume muchos de los retos y problemas que hemos enfrentado como Escuela de Datos y de los que platicamos con los miembros de la red. En diferentes sesiones de encuentro entre la red como los summercamps anuales tenemos discusiones y ejercicios que nos permiten ir adecuando nuestro trabajo.

En base a nuestros propios comentarios y aportes, generamos una matriz que resume y clarifica algunos de los temas recurrentes en nuestras evaluaciones y seguimientos. Algunas de estos hallazgos surgen de la experiencia constante y de observaciones post-actividades que, poco a poco, van revelando patrones que nos permiten entender qué funciona mejor.

Queremos que más personas aprendan a usar datos y por eso creemos que estas consideraciones son útiles como parámetro para que proyectemos espacios de interacción que tengan mejores resultados.

En esta matriz la duración del evento es una variable crucial, por diferentes razones:

  • Si programas un evento de mayor duración, menos personas pueden ser parte, pero esos que sí pueden demuestran un mayor nivel de compromiso a las metas del programa.
  •  Los eventos de mayor duración te permiten desarrollar a profundidad diversos contenidos y explorar algunas cuestiones cruciales que en espacios cortos no es recomendable: hablar sobre los matices de un tema, cuestionarlo y desarrollar criterio a través de este proceso que se combine con el conocimiento práctico y teórico.
  • Al trabajar en construcción de capacidades, el tiempo y la repetición son claves para lograr una apropiación de los contenidos, técnicas y herramientas.

Esta matriz nos sirve también para que, cada año, con una nueva generación de líderes que entrenan a otros a través de nuestro programa de Fellowships, ellos puedan tomar discernir mejor qué actividades desarrollar y responder a la demanda de los socios y aliados, así como proyectar una agenda propia.

 

 

La matriz se divide en cuatro propósitos específicos del trabajo de Escuela de Datos y se manifiesta en cuatro temporalidades diferentes.

Creación de contenido: En Escuela de Datos estamos constantemente produciendo tutoriales y blogs con experiencias y reflexiones. No sólo a través de nuestros sitios web sino también activando conversaciones a través de  de nuestras redes sociales y en cursos masivos, webinars y charlas que coproducimos con aliados en diferentes ámbitos.

Construir capacidades de entrenadores: la lógica de nuestra red parte del principio de que una persona que aprendió con nosotros, si continúa aplicando el conocimiento y  aprendiendo más puede eventualmente convertirse en un entrenador. Así fue mi historia con Escuela de Datos. La fellowship trabaja también bajo este enfoque y nuestros fellows de años pasados se convierten en capacitadores experimentados luego de este proceso. Por eso, cuando nos juntamos también dedicamos un tiempo para aprender de los demás y capacitarnos. Muchos programas con los que colaboramos siguen esta lógica expansiva: Training-Of-Trainers que, al entrenar a quienes entrenan, eleva a una potencia n los alcances de nuestros espacios de aprendizaje.

Construir capacidades de beneficiaros: el entrenamiento más clásico supone que un grupo de interesados aprende de un miembro de la red de Escuela de Datos. Hacemos muchas actividades de este tipo, que suelen ser introductorias o que se van adecuando al público específico y los temas diferentes: los datos no quieren decir números y presupuestos, también pueden ser otros temas que trabajamos como género, cambio climático, desarrollo sostenible, rendición de cuentas y acción humanitaria.

Proyectos data-driven: Entendemos la lógica de un proyecto de impacto social y a eso le añadimos un proceso de enfoque basado en la evidencia y lo que nos dicen los datos y su análisis. Es así como hemos acompañado diferentes proyectos alrededor del mundo, ya sean de periodismo de datos e investigación, de recolección de datos en acción humanitaria: salud, emergencias y riesgo; de publicación y apertura de datos desde el gobierno o la sociedad civil y la generación de plataformas digitales en diferentes niveles. No se trata solo de saber qué hacer con los datos, sino saber cómo trabajar en un proyecto en el que estos sean determinantes.

¿Por qué una matriz?

Este cuadro sencillo nos permitió pensar críticamente sobre el valor añadido que cada actividad puede tener. ¿Cuál sería el impacto efectivo de una organización que sólo hace entrenamiento de plazos muy cortos en comparación con otra que se enfoca en proyectos a largo plazo? Al entrevistar a algunos de nuestros socios y miembros de la red pudimos analizar nuestros procesos, y a eso le añadimos reportes de talleres, programas y los resultados de algunas encuestas de evaluación en nuestros talleres (sí, esos formularios o papeles que llenas al finalizar un taller tienen sentido de existir).

Algunas de las conclusiones que surgieron de ese proceso:

  • Las actividades de muy corto plazo son más valiosas para concientizar y promocionar el uso de datos. Además, que sean cortas permite que muchas más personas se adhieran y podamos construir una comunidad de datos activa en los diferentes ecosistemas locales en los que nos movemos.
  • La construcción de capacidades requiere un tiempo mediano o largo de aprendizaje. En una actividad de un día o una mañana se aprenden panoramas generales, pero no tiene la repetición ni las etapas graduales que influyen en la apropiación del conocimiento y la generación de habilidades.
  • La creación de contenido complementa las actividades en persona y se puede generar a partir de, por lo que no consiste sólo en esperar que la gente llegue a tus contenidos por sí mismos o por magia.
  • Los proyectos data-driven en colaboración con socios y beneficiarios son los que demuestran claramente un impacto, aunque no necesariamente este impacto o el proyecto en sí se sostiene en el tiempo.

Con algunas de estas conclusiones construimos una versión de valor añadido que incluye estos criterios que consideramos son útiles para cualquiera que busca formar en habilidades de datos.

 

Estas dos matrices pueden servirte como un recurso a la hora de programar actividades o de sopesar qué opción de aprendizaje te conviene más, entre las diferentes opciones que existen.

Como siempre, estamos dispuestos a escucharte y saber cómo aplicas estos contenidos y si te parecen útiles. Creemos que estos son una guía que puede nutrir el componente metodológico de muchos procesos de formación en tecnología cívica y uso de datos. 

 

La matriz y este contenido son, a la vez, una traducción y adaptación de los propuestos por School of Data. Puedes encontrar esa primera versión en esta publicación en inglés. 

Cómo una base de datos en México se adelantó al gobierno para buscar desaparecidos

- el diciembre 5, 2017 en Noticias, Uncategorized

Peronasdesaparecidas.org.mx es el nombre de la interfaz creada por la organización sin fines de lucro Data Cívica, que logró acercar datos cruciales a familias y organizaciones que buscan a personas desparecidas en México. Estos datos, como el nombre propio de las personas en los casos del fuero común (estatal o de provincias), no están actualmente publicados en la base oficial gubernamental, el Registro Nacional de Personas Extraviadas o Desaparecidas (RNPED).

 

Lee el resto de la entrada →

Cómo crear un mapa 3D de Buenos Aires, Argentina

- el octubre 4, 2017 en Uncategorized

Por Nicolas Grossman y Bruno Salerno

Los mapas son excelentes herramientas para visualizar datos de una ciudad y compararlos entre zonas de la misma. Pero si además podemos graficar los edificios en tres dimensiones, la visualización resulta más impactante aún. En este tutorial contamos cómo realizamos el mapa que muestra los precios promedio del metro cuadrado en cada parcela de la ciudad de Buenos Aires (Argentina) y San Pablo (Brasil), con sus respectivos edificios en 3D.

Lee el resto de la entrada →

Continúa el mapeo de vías y necesidades en México tras el terremoto

- el septiembre 27, 2017 en Experiencias, Fuentes de datos, Noticias, Uncategorized

CC atribución, compartir igual. Pot Patricia Curiel

El flujo de ayuda proveniente de la desbordante salida de la población a las calles de la Ciudad de México tras el terremoto del 19 de septiembre, población que dejó centros de trabajo y hogares propios para auxiliar a otros, se convierte también en un flujo de información que es necesario organizar para garantizar que la ayude llegue donde se requiere.

Miles de voluntarixs, con pico, pala y casco, pero también con alimentos, vendas, jeringas y otros materiales médicos llegaron a hacer fila para remover escombros o aliviar necesidades básicas de la población a cada uno de los más de 40 derrumbes en la ciudad.  Siguen llegando, aunque ahora con menos frecuencia, olas voluntarias que en en un principio hacían fila para llevar alimentos a centros de acopio rebasados, o que ya no podían almacenar el suficiente tiempo alimentos percederos. Esta fuerza política enfocada en la ayuda al otro irá languideciendo conforme pasen los días, a menos que hagamos un esfuerzo por lo contrario.

Aquí encuentras las fuentes y salidas de datos para el alivio de los terremotos del 7 y 19 de septiembre en México, y que afectaron principalmente a los estados de Chiapas, Oaxaca, Puebla, Morelos, Estado de México y Ciudad de México.

Lee el resto de la entrada →

Datos para fiscalizar a municipios en Argentina

- el agosto 2, 2017 en Uncategorized

En un entorno donde los datos locales se hacen cada vez más necesarios y relevantes, Datos Concepción, organización evangelista sobre datos abiertos en Argentina, lanzó un portal de apertura de datos municipales con visualizaciones interactivas, filtros para bucear en los datos y bases descargables para que puedan ser reutilizadas en nuevas aplicaciones y herramientas.

En esta colaboración, Adrián Pino, coordinador de Datos Concepción y Soledad Arreguez, periodista, investigadora y colaboradora de la misma organización, comparten cinco aprendizajes clave sobre la creación y navegación del portal de datos abiertos.

El proyecto nació hace un año con la meta de montar el primer portal de transparencia de la provincia de Entre Ríos (Argentina) para la Municipalidad de Concepción del Uruguay. La plataforma se lanzó el lunes 4 de Julio de 2017 y ya está en línea en www.concepciontransparente.org.   desde allí es posible el acceso a los gastos del Municipio desde 2009 hasta la actualidad.
La plataforma (en versión beta) permite a los usuarios filtrar y visualizar el régimen de contrataciones y otras modalidades a partir de la información oficial que publica la Municipalidad, incluyendo la cantidad de órdenes de compra, el ranking de obra pública y el monto que percibió cada proveedor.

El coordinador de Datos Concepción, Adrián Pino,  dijo que “el desafío implicó pensar en una herramienta dinámica, simple de entender para el común de los usuarios y con una fuerte apuesta a estructurar los datos de forma clara y ordenada para que sea fácil efectuar búsquedas, seleccionar proveedores y descargar la información”.

Aprendizajes

1. Mostrar los contratistas de la Obra Pública

 

 

 

La enorme sensibilidad que despiertan los hechos de corrupción vinculados a las coimas en las obras Públicas vuelve necesario exhibir un Ranking de Contratos de Obra Pública para dar seguimiento a los principales beneficiarios de este rubro. No hay transparencia posible si no se identifica claramente quiénes son los principales contratistas de la obra pública, cuántos contratos recibieron y por cuánto dinero.

2. Filtros para bucear en los datos

Para promover un gobierno transparente hay que permitir que todas las contrataciones estén disponibles y en línea, y puedan ser exploradas con filtros para comparar. El control cruzado de proveedores y los procesos de auditoría cívica que permite el Portal Concepción Transparente marcan un piso elevado para los intentos de corrupción. La posibilidad de interactuar con los datos es crucial en este tipo de proyectos.

 

 

 

 

 

 

 

 

 

 

 

3. Permitir el análisis a través del tiempo

Si se muestra información a partir de los años disponibles, es posible trabajar con el filtro de fecha, que permite analizar algunos patrones en los datos y gastos de los Municipios.

4. Visualizaciones interactivas.

La sencillez y claridad de las visualizaciones es una necesidad creciente entre los Portales de Transparencia, que tienen la enorme misión de ayudar a los ciudadanos a entender el destino de los dineros públicos.

 

 

 

 

 

 

 

 

5. Datos Abiertos

La disponibilidad para descargar los datos en formatos abiertos es un requisito cada vez más necesario en la promoción de formas de empoderamiento que impulsan los procesos de apertura y transparencia de datos públicos. Con más datos en poder de los usuarios, es más probable que haya mejores controles para evitar el desvío de fondos públicos.

El desafío de escalar

El trabajo de Datos Concepción en el desarrollo de esta herramienta contó con las aportaciones del equipo de Genosha y se estructuró con un esquema que permite ser adaptado a los requerimientos de otros Municipios de Latinoamérica. En esta etapa posterior al lanzamiento estamos mejorando las prestaciones del Portal, agregando funcionalidades y visualizaciones que mejoren la comprensión de los gastos de cada Municipio.

El esfuerzo de nuestro equipo está enfocado en ciudades de hasta 300 mil habitantes, entendiendo que los Municipios de menor cantidad de población son los que requieren más acompañamiento para avanzar en políticas de Transparencia y Apertura de Datos.

En este momento el equipo de Datos Concepción está a la búsqueda de financiamiento adicional que les permita escalar a otros Municipios de Latinoamérica que ya han mostrado interés en replicar este Portal de Transparencia.

Cómo entender el presupuesto, caso de éxito de un MOOC en México

- el julio 29, 2017 en Uncategorized

 

Cómo Entender el Presupuesto, el Gasto Público a través de los Datos es un curso masivo en línea ocurrido en México entre marzo y abril de 2017.  Es un ejemplo de la colaboración entre organizaciones civiles como Socialtic e instancias gubernamentales mexicanas como la Secretaría de Hacienda y Crédito Público (SHCP).

En esta entrevista Lorena Rivero, directora del área de monitoreo del desempeño y análisis de la información en la SHCP, relata junto con Sergio Araiza, responsable del área de datos en Socialtic, los logros del curso masivo.

Con apenas tres semanas de registro, reunió a 17 mil 500 estudiantes, de los cuales cerca de la mitad comenzó alguna de las actividades. De estas personas 70 por ciento aprobó el curso, un número inusitado para capacitaciones de esta naturaleza.

La mitad de ellos, además, aprobó con un puntaje mayor a 95. Los estudiantes fueron principalmente servidores públicos (alrededor del 80 por ciento) académicos (12%), integrantes de la iniciativa privada y organizaciones civiles formaron el resto.

A través de este curso y el anterior, uno que SHCP organizó en colaboración con la Universidad Nacional Autónoma de México (UNAM), Rivero ha llegado a la conclusión de que los datos locales son los más relevantes para la comunidad general y, por lo tanto, los más valiosos y los que más apremian cursos como Entender el Presupuesto.

Dada la demanda, se prevé que se abra una nueva edición próximamente.