Excel – Escuela De Datos http://es.schoolofdata.org evidencia es poder Fri, 03 Feb 2017 18:36:03 +0000 es hourly 1 https://wordpress.org/?v=5.3.2 114974193 ¡Data Wrangler: limpia tus bases en un tris! http://es.schoolofdata.org/2016/09/13/data-wrangler-limpia-tus-bases-en-un-tris/ http://es.schoolofdata.org/2016/09/13/data-wrangler-limpia-tus-bases-en-un-tris/#respond Tue, 13 Sep 2016 17:42:13 +0000 https://es.schoolofdata.org/?p=1795 Amo el trabajo de datos. Pero hay una cosa que no me gusta: la limpieza. ¿No te ha pasado alguna vez? ¡A mí sí y sigo contando! Por eso, quiero enseñarte cómo utilizar una herramienta para hacer al mal tiempo buena y cara: Wrangler. Esta es una herramienta interactiva GRATUITA, desarrollada por el proyecto de investigación Stanford/Berkeley, que sirve para la limpieza y transformación de datos.

Con ella, te lo prometo, pasarás menos tiempo limpiando y más tiempo analizando tus datos a la hora de elaborar bases de datos. ¿Te animas a probarla? Bueno, pues, lee y te cuento cómo la probé con una tabla de datos, sobre las primeras tres jornadas de CONCACAF 2016-2017, que extraje de Mismarcadores.com.

1

 

 

 

 

¡Menor tiempo, mejor limpieza!
Un profesor en la «U» solía decirme que, lo bueno si breve, dos veces bueno. Y eso es lo que evoca Wrangler al momento de utilizarlo. Para comenzar, ingresa a http://vis.stanford.edu/wrangler/, donde encontrarás un botón al que hasta el más curioso y entusiasta datero dará clic con su provocativo Try It Now (¡Pruébala ahora!).

34

 

 

 

 

Como verás a continuación, la interfaz de Wrangler es sencilla. Un poco primaria para algunos, pero los resultados son prometedores para quienes deseamos limpiar datos rápido y bien. ¿Ves cómo está la tabla? Fea, ¿verdad?5

 

 

 

 

Para mejorarla, lo primero que hice fue seleccionar la primera fila de la tabla y acudí al auxilio de la opción Promote para que la primera fila sea el encabezado de cada una de nuestras columnas. Así, ya tenemos un encabezado con el cual la carpintería datera puede comenzar. ¡Eso sí! Para cambiar cada uno de sus nombres puedes dar doble clic y ¡listo! ¡Ya tienes categorías!

6 7

 

 

 

 

Ahora, rellenemos los espacios en blanco de cada jornada. Para eso, sombreé la columna JORNADA. Y me fui a la opción Fill, con la cual puedes reemplazar las columnas/filas en blanco por insumos de valor. Para este caso, le indiqué que debía rellenar todo espacio debajo de JORNADA que estuviera en blanco.

¿Cómo? Colocando lo siguiente en su barra de opciones:

Column JORNADA

Direction: above

Row: JORNADA is null

Finalizado esto, aparecerá una opción con nuestros comandos en el menú SUGGESTIONS. Dale clic al signo de «más» y verás cómo empieza a tomar forma la cosa.

8

 

 

 

 

Sí, yo también vi esas filas en blanco que no aportan nada en cada JORNADA. Para eliminarlas, selecciona cada una de las columnas e ingresa a la opción DELETE, donde podrás prescindir de cada una de ellas en el menú de la izquierda, dando clic al signo más en el menú SUGGESTIONS.

9

 

 

 

 

Mejor, ¿no? Ahora, tenemos otra piedrita en el camino: ¡Fecha y hora están unidas! Pero, que no panda el cúnico. Para separarlas, me di a la tarea de hacer lo siguiente:

1) Seleccioné la columna FECHA

2) Fui a la opción SPLIT y coloca WHITESPACE en la variable after.

3) Y voilá…

10

 

 

 

 

¡Eso sí! No pases por alto cambiar las columnas SPLIT a FECHA y HORA respectivamente. Ahora, veo que el MARCADOR está igual de sucio. Por tanto, tendremos que separar cada uno de esas ÊÊ que les mantienen unidos. ¡Empecemos entonces! Yo comencé por el marcador del equipo 2 e hice esto:

1) Sombreé la columna MARCADOR

2) Fui a la opción SPLIT y coloca ÊÊ en la variable after.

3) ¡Listo! ¡Ya me lo separó!

11

 

 

 

 

Ahora, viene lo mejor: ¿cómo quitamos esas ÊÊ del marcador del equipo 1? Antes de separar, sombreemos las ÊÊ y sígueme con lo siguiente:

1) Vamos a la opción SPLIT

2) Coloquemos ÊÊ en la opción on

3) ¡Mira qué padre! ¡Nos separó las ÊÊ del marcador!

4) ¡No olvides renombrar la columna separada como MARCADOR EQUIPO 1!

12

 

 

 

 

¡Solo nos queda prescindir de la columna en blanco del anterior SPLIT! Y, para eso, ve a la opción DROP y dale clic a la primera opción que te presenta el menú SUGGESTIONS.

13

 

 

 

 

¿Qué hacemos ahora? Ve a la opción EXPORT que se encuentra debajo de SUGGESTIONS y haz clic. Te saldrá una pantalla con la tabla de datos limpia. Copíala y llévala a tu Text Edit (Mac) o Bloc de Notas (Windows). Pega el archivo y guárdalo como un texto sin formato con extensión .csv.

15

 

 

 

 

Ahora, si la curiosidad te mata como a mí me pasó, abrí el .csv en Excel… ¡Y este fue el resultado!

16

 

 

 

 

¡Justo algo con lo cual podemos trabajar! ¡Gracias por oír mis plegarias dateras, Wrangler!

¿Por qué confiar en Wrangler?

«¿Para qué tanto problema?», dijo sabiamente Juan Gabriel. Y yo le creo… yo te invito a darle un voto de confianza a Wrangler. ¿Por qué? Porque me ha pasado que se me va el tiempo (¡y la vida!) manipulando datos exclusivamente para que las herramientas de visualización y análisis las leen. Pero, ¡oh, sorpresa! Muchas veces, el resultado no es el esperado porque la limpieza no fue lo que yo deseaba.

Y, en esos deseos de cosas imposibles, Wrangler está diseñadas para acelerar esos procesos; más, si tienes a un editor o a tu jefe exigiendo bases de datos y visualizaciones rápidas y bien ejecutadas. Con este insumo, pasarás menos tiempo lidiando con tus datos y mucho más aprendiendo de ellos al tener las preguntas correctas que te ayuden a sustentar/refutar hipótesis de periodismo de datos.

También, te permite la transformación interactiva de información sucia que puedes encontrar a diario en insumos de análisis para cualquier proyecto en el cual te encuentres trabajando. Y, lo que más me encanta, te ayuda a exportar datos para su utilización en mis dos inseparables amigos: Excel o Tableau. ¡Yeeeeeeeeeeeeeey!
Por los registros, ¡no te preocupes! Una vez exportes la data trabajada, la herramienta volverá a su fase original con las bases precargadas (¡otra razón para amarte, Wrangler!). Ya si esto no te convence, anímate a probarla y compartirnos qué te parece y que no. ¡No te quedes con las ganas y comparte con nosotros tus impresiones acá o en nuestro Twitter (@EscueladeDatos)! ¡Cambio y fuera!

 

 

 

 

Flattr this!

]]>
http://es.schoolofdata.org/2016/09/13/data-wrangler-limpia-tus-bases-en-un-tris/feed/ 0 1795
Nuevas Dateras Latam http://es.schoolofdata.org/2016/06/01/nuevas-dateras-latam/ http://es.schoolofdata.org/2016/06/01/nuevas-dateras-latam/#respond Wed, 01 Jun 2016 20:43:39 +0000 http://es.schoolofdata.scoda.okfn.org/?p=1393 En estas semanas estaremos publicando cuatro perfiles de dateras latinoamericanas que con su capacidad en análisis de datos y visión de alto impacto social están inyectando frescura a lo que conocemos como periodismo de datos en la región.

 

fotoTM

Cómo saber si tus ideas son correctas: Tania Montalvo, México

 

 

 

19242158KatherinePennacchio

Venezuela. Katherine Pennacchio: Rebeldía colaborativa

Flattr this!

]]>
http://es.schoolofdata.org/2016/06/01/nuevas-dateras-latam/feed/ 0 1393
Introducción a limpieza de datos con Excel (cuatro funciones que cambiarán tu vida) http://es.schoolofdata.org/2016/03/21/introduccion-a-limpieza-de-datos-con-excel-cuatro-funciones-que-cambiaran-tu-vida/ http://es.schoolofdata.org/2016/03/21/introduccion-a-limpieza-de-datos-con-excel-cuatro-funciones-que-cambiaran-tu-vida/#respond Mon, 21 Mar 2016 17:11:33 +0000 http://es.schoolofdata.scoda.okfn.org/?p=1311 Cómo limpiar datos con Excel (cuatro funciones que cambiarán tu vida)

Ahí estás, sentado frente al monitor de tu pantalla. Las celdas de la mayor base de datos que tu equipo de trabajo consiguió se deslizan frente a tus ojos.
Están llenas de dedazos, entradas diferentes para un mismo nombre, ciudades en nombre completo por un lado y abreviadas por otro… es un desastre.

No tienes conexión a internet, por lo que no puedes usar Open Refine o herramienta por el estilo y, además, no tienes ninguna otra herramienta de datos instalada.
Son sólo tú y una hoja de cálculo en una isla desierta. Estas cuatro fórmulas/funcionalidades podrían salvarte la vida.

Isla desiertaCC por Gibran Mena

Filtros

Lo primero que tendrás que hacer es, por supuesto, tener una tabla de datos donde las celdas sean, de hecho, datos.
En este caso usaremos un ejemplo sencillo con los eventos del Open Data Day 2016.

Ve al tab Datos (lo mismo si estás usando hojas de cálculo propietarias como Excel o las más recientes versiones de Calc, de LibreOffice) y da clic en el ícono Filtros.

Screen Shot 2016-03-21 at 1.15.20 AM

En cada uno de los nombres de las columnas puedes dar clic en el triángulo, que despliega los elementos enlistados. Selecciona sólo los que quieras ver. Puedes especificar aún más la búsqueda filtrando desde otra columna.

Puedes usar la opción “Filtros de texto” para hacer la búsqueda aún más específica, con la opción, por ejemplo de hacer búsqueda en los elementos de la columna excluyendo una palabra específica o en la opción “Filtros de fecha” que… filtra las fechas.

Para deshacerte de los filtros sólo da clic en “Borrar filtro”

Ordenar

Screen Shot 2016-03-21 at 1.17.16 AM Screen Shot 2016-03-21 at 1.20.42 AM

En el mismo submenú de Datos hay un ícono con una flecha descendente llamado Ordenar. Esta función puede resultar útil en caso de ser necesitarse un listado alfabético, numéricamente o descendente. Pero también puedes crear un orden basado en preferencias específicas.
También puedes ordenar de acuerdo con una lista personalizada, por ejemplo si quieres que los datos de Colombia aparezcan primero que los de Bolivia.
Primero debes crear una lista personalizada: digitas en las celdas los valores requeridos en el orden requerido, y en el menú de Preferencias de Excel das clic en Modificar listas personalizadas. Añade la selección.
Luego, en el cuadro de diálogo de Ordenar, es necesario seleccionar la lista personalizada recién creada.

Buscar / Reemplazar

Esta es una función en Excel, es decir que es una fórmula incluida por el paquete por defecto. Las fórmulas y funciones tienen elementos sintácticos (“ortográficos”), estos son paréntesis y comas, y argumentos (los datos a los que se aplican dichas fórmulas). La sintaxis incluye el nombre de la función, los paréntesis, comas que separan las celdas y, finalmente, los argumentos o datos que la fórmula “consume”.
En el caso de Buscar Reemplazar es sencillo hacerlo directamente desde el menú de opciones del programa.
Digamos que queremos encontrar los eventos que se realizan en Ciudad de México. En ubicación tenemos Ciudad de México con acento y Ciudad de Mexico, sin acento, además de DF y Distrito Federal.
La Ciudad de México se llama oficialmente así desde hace muy poco, por lo que este caso seguramente lo encontrarás si trabajas con datos de esta ubicación. No faltará quien le llame Mexico City.

Screen Shot 2016-03-21 at 8.47.35 AM
Sólo hay que ir al Menú de Buscar y dar clic en Reemplazar. Para buscar todas las entradas similares a México puedes usar M*xico, que incluye tanto México como Mexico, pero también Maexico o Meexico o Meéxico, que pueden haber sido dedazos a la hora de ingresar la información. Si se quieres buscar solamente un caracter comodín, puedes usar el signo de interrogación, como en M?xico, y si quieres buscar signos como ? o & o @ puedes usar la tilde, en caso de que haya entradas como M?xico, M$xico, M@exico.
Enseguida puedes reemplazar cada valor uno por uno o dar clic en Reemplazar todos. Puedes hacer tantas búsquedas/reemplazos consecutivos como quieras y puedes hacerlo por filas o columnas. Una guía más detallada la encuentras aquí.

BuscarV

La función nos permite introducir un valor específico conocido (locación) para que el programa vaya y busque el dato de una columna que no conocemos (nombre de los organizadores de un evento en Azerbaiyán). Es particularmente útil en matrices masivas con interminables columnas.
La sintaxis o estructura “ortográfica” de la función es la siguiente:
=BUSCARV(«Japan»,B2:E7)
En algunos casos, aunque tengas Excel en inglés se puede usar la fórmula en español. En otros no, y deberás sustituir sólo el nombre de la fórmula por “vlookup”. Esta fórmula se digita en la celda en la que queremos que la matriz escupa el resultado deseado.
Vamos paso a paso.
Lo primero que debes hacer es colocarte en la celda en la que quieres que aparezca lo que buscas.
En mi caso es J5 (y la lista de mi antivirus está actualizada, no tiene nada que ver, pero en la vida eso te da puntos extra).

Screen Shot 2016-03-21 at 9.25.25 AM

(Este screenshot es también un recordatorio subliminal de que deben instalar y manterner activo su antivirus)

Eso, J5, es el primer “argumento” que escribo después del nombre de mi fórmula, y entre paréntesis.
=BuscarV(J5)
Después se introduce una coma, seguida por la celda donde empezaré a buscar =BuscarV(J5,A2:
Seguida por dos puntos y la fila y columna de la celda donde pienso terminar la búsqueda (G207, en mi caso).

Screen Shot 2016-03-21 at 9.31.50 AM

Puedes también simplemente seleccionar el área donde buscará la función, esto se conoce como rango de búsqueda.
He ahí el poder de una hoja de cálculo para hacer limpieza de datos. Úsalo con sabiduría.

Flattr this!

]]>
http://es.schoolofdata.org/2016/03/21/introduccion-a-limpieza-de-datos-con-excel-cuatro-funciones-que-cambiaran-tu-vida/feed/ 0 1311
SQL: La precuela (Excel vs bases de datos) http://es.schoolofdata.org/2013/11/27/sql-la-precuela-excel-vs-bases-de-datos/ http://es.schoolofdata.org/2013/11/27/sql-la-precuela-excel-vs-bases-de-datos/#comments Wed, 27 Nov 2013 12:32:55 +0000 https://es.schoolofdata.org/?p=678 Este post fue publicado originalmente en inglés por Noah Veltmann en School of Data, y traducido al español por Aura Montemayor de SocialTIC.

5613864571_f8ef912bd0_z

Imagen: Frédéric Bisson

Escuela de Datos retomó la publicación de Noah Veltman para Learning Lunches, un tutorial para periodistas que se dedica a disipar la idea de que las herramientas técnicas son difíciles de usar cuando se trata de obtener datos.

Las primeras herramientas que compara son SQL y Excel.

Para qué es bueno Excel:

Excel tiene una mala reputación, pero lo cierto es que también es un software muy flexible y potente, y en él puedes hacer muchas cosas como las siguientes:

  • Navegar por los datos con facilidad.
  • Introducir y editar datos manualmente con facilidad.
  • Compartir copias de los archivos.
  • Escoger la presentación visual.
  • Aprovechar la estructura flexible que dan las celdas únicas.
  • Integrar tu trabajo con el software de cualquier oficina.
  • Aprovechar la vivacidad que da la posibilidad de uso de fórmulas.
  • Usar los íconos de ayuda para realizar gráficos, que dan sugerencias y tienen corrector ortográfico.
  • Aprender a usarlo de manera relativamente fácil.

Para qué no es bueno Excel:

Desafortunadamente, Excel tiene límites, y es malo para otras cosas como las siguientes:

  • No integra los datos, ya que cada celda es única; esto hace que el documento pueda ser muy inconsistente. Un número no tiene necesariamente el formato de un número; así puede haber variaciones entre datos. Debes poner atención a los detalles.

  • No es recomendable para trabajar con múltiples bases de datos.

  • Cuando los datos llegan a determinada cantidad, el rendimiento del documento se reduce al igual que la interfaz. Las celdas son limitadas.

  • Cuando se trata de trabajar en equipo, es muy difícil saber quién modificó el documento y en qué lugar.

Bases de datos relacionadas

¿Qué es una base de datos relacionada? Podríamos ser muy exigentes con la terminología, pero, en términos generales, se trata de un «servidor» que almacena todos tus datos (piensa en una enorme biblioteca) con un mecanismo para que alguien más las pueda consultar (piensa en un bibliotecario).

La consulta SQL (Structured Query Language) es una sintaxis para solicitar cosas desde la base de datos. Es el lenguaje que el bibliotecario habla. Sigue leyendo y te hablaremos más de esto.

La parte de «relacionar» es un indicio de que estas bases de datos se preocupan por las relaciones entre los datos. Y sí: también existen las bases de datos no relacionadas, pero asumiremos por el momento que todos somos amigos.

El mantra de las bases de datos: cada cosa en su lugar

En una base de datos, debes guardar las cosas lógicamente. Incluso, algunas veces ésta te obliga a guardarlos de cierta manera.

Piensa que cada base de datos es como una tabla, y cada tabla corresponde a una hoja de cálculo en un archivo de Excel. Una tabla de base de datos se compone de columnas y filas.

Columnas

A cada columna se le asigna un nombre (como «Dirección» ) y un tipo de columna definida (como  ‘ Fecha ‘, ‘Fecha + Hora ‘ o ‘Texto’) . Tienes que escoger un tipo de columna y mantener el mismo formato para cada fila. La base de datos relacionará a todos los datos que pongas en esa columna bajo ese tipo. Esto podría parecer tedioso y molesto, pero es muy útil. Si trataras de poner datos incorrectos en una columna, Excel marcaría un error hasta que fueran introducidos de manera correcta.

También puede especificar cosas útiles, como las siguientes:

  • Si una columna tiene valores duplicados.
  • Si una columna está vacía.
  • El valor predeterminado de una columna si no especificas tú uno.

Importante: Las columnas definen la estructura de los datos.

Filas

Las filas son los datos reales de la tabla. Una vez que establezcas la estructura de la columna, puedes agregar tantas líneas como desees.

Cada fila tiene un valor para cada columna. Excel es un lienzo visual y te permitirá crear cualquier tipo de celdas y fusionarlas como desees. Incluso puedes hacer formas tan complejas como en un juego de Tetris. Sin embargo, esto no va con la idea de una base de datos donde se prevé una red real. Si dejas celdas vacías de manera intencional, el documento sabe distinguir que esa celda está vacía, y que no es lo mismo que una no existente.

Mesas, combinaciones y llaves

Más adelante retomaremos este tema, pero poner todo en el lugar correcto significa hacer tu vida más sencilla. Puedes hacer y deshacer tus datos para ponerlos en diferentes tablas o categorías y poder trabajar con ellos como un conjunto.

Que los datos sean datos

Las bases de datos sólo se centran en las capas superficiales e ignoran por completo la presentación visual de los datos. Colores, formas, bordes, fuentes… básicamente no existen para las bases de datos. Lo que ves es lo que hay. Eso se puede tomar como una buena noticia, pero también como una mala. La buena es que las bases de datos son excelentes para hacer cálculos; pero la mala es que tienen que ser complementadas con otro programa para crear un producto final, como un gráfico o una página web.

Al ser muy buenas en el almacenamiento y procesamiento de datos y no en otras cosas, las bases de datos son extremadamente escalables. ¿Necesitas 1 millón de filas de datos? ¿10 millones de dólares? No hay problema: no hay prácticamente ningún límite a la cantidad de datos que pueden almacenar.

Bases de datos y web

Las bases de datos son excelentes para hacer análisis preliminares, explorar datos y limpiarlos… Pero son mejores para conectarlos con otros programas una vez que sepas lo que quieres hacer con ellos. Virtualmente, todo el internet se sustenta en bases de datos como las antes mencionadas. Por ejemplo Twitter, Facebook y Gmail son complejas bases de datos que nos dan información.

Cuando se trata de noticias y se maneja una gran cantidad de datos (o se espera que éstos cambien con el tiempo), tiene a utilizarse una base de datos. En vez de tener un archivo JSON estático con todos tus datos, mantienes una base de datos y escribes un app que hace búsquedas en ella con los datos actuales. Y así, cuando los datos cambian, lo único que tienes que hacer es actualizar la base de datos – los cambios se verán automáticamente reflejados en el app.

Para los casos de apps en las que los datos no van a cambiar y la cantidad no es grande, una base de datos es demasiado esfuerzo que no rendirá frutos, aunque tal vez quieras usar una al principio para crear un archivo de datos de cierto tipo.

Si estás usando un API para introducir datos a un app, estás usando también una base de datos; la diferencia es que estás dejando que alguien más la almacene por ti. Esto es mucho más fácil, pero también aumenta la vulnerabilidad de tus datos, pues esas personas pueden acceder a tus datos cuando quieran.

Pequeñeces que vale la pena mencionar: a veces un app no accede directamente a una base de datos para jalar información. A veces accede a archivos en cache, pero esos archivos sí son generados automáticamente con base en lo que está en la base de datos.

¿Entonces cuándo debo usar una base de datos en lugar de Excel?

Excel y las bases de datos son dos cosas totalmente distintas. Ninguna herramienta es buena o mala. Te recomendamos usar una base de datos si tu proyecto cumples con las siguientes características:

  • Si tienes muchos datos.

  • Si tus datos están desordenados o son muy complejos.

  • Quieres proyectar otras cosas con tus datos.

  • Si otras personas necesitan trabajar con tus datos.

OK, me gusta. ¿Cómo puedo empezar?

Las bases de datos tienen su propia profundidad. Es recomendable llevarla con calma y no sumergirse de inmediato en lo más profundo. Úsalas cuando cuando las ventajas superen las inconveniencias, y cuando lo que necesites sea muy fácil de conseguir. Mientras más practiques, te vas a sentir más confiado y podrás extraer mayor información.

Opción 1: SQLite

SQLite es una excelente manera de empezar. Puedes instalar SQLite Manager.

Si necesitas asesoría de SQL, visita: https://github.com/tthibo/SQL-Tutorial

Opción 2: Microsoft Access

Microsoft Access se ejecuta en SQL y presenta una interfaz de software tradicional. Dependiendo de a quién le preguntes, es una herramienta útil… o simplemente hace las cosas más confusas. Nosotros NO lo recomendamos, pero las opiniones pueden variar.

Opción 3: Configurar una cuenta web compartida

Puedes configurar una cuenta web compartida, y esto puede costar 20 libras (32 USD) al año. Típicamente, estas cuentas vienen con una interfaz que permite crear, editar e interactuar con bases de datos sin escribir ningún SQL. También puedes jugar con las otras habilidades relacionadas con la web que te interesen y compartir los resultados con los demás.

Visita: A Small Orange (una opción buena y barata para hosting): http://asmallorange.com/

Opción 4: ¿Instalo MySQL o PostgreSQL en mi computadora?

Puedes instalar MAMP en una Mac o WAMP en una  PC. Esto instalará MySQL, así como una interfaz llamada phpMyAdmin (http://www.phpmyadmin.net). Una vez que hayas instalado MySQL, tendrás muchas opciones adicionales, ya que el software libre sirve como un navegador o como editor para tus bases de datos SQL. Si lo prefieres, puedes instalar PostgreSQL, que es diferente a MySQL. Ambos son populare,s ya que tienen una gran cantidad de datos. Pero, si estás iniciando, por lo pronto no pienses mucho en eso.

Apéndice: Consulta para la diversión y el beneficio

Gran parte de las bases de datos proviene de SQL, un lenguaje muy flexible para hacer preguntas acerca de las base de datos. Al principio no es fácil de usar, pero, con los siguientes ejemplos, todo será más claro.

SQL tiene 4 bloques básicos:
SELECT (buscar algo);
UPDATE (modificar algunas filas existentes);
INSERT (añadir nuevas filas);
DELETE (eliminar algunas filas).
Hay muchos otros comandos, pero éstos son los que más vas a utilizar; especialmente SELECT.

Imaginemos una tabla llamada “atletas olímpicos ” que tiene seis columnas (nombre, país, fecha de nacimiento, estatura, peso y sexo):

name
country
birthdate
height
weight
gender

Cuando creamos nuestra tabla, podemos especificar cosas como “no es necesario poner el país” o “el sexo debe ser M o F”.

Misión 1: Obtén una lista de todos los atletas en orden alfabético. Desde aquí puedes ver toda la tabla, ordenarlos por nombre de la A a la Z . Lo puedes hacer de la siguiente manera:

SELECT

*
FROM athletes
ORDER BY name ASC

Misión 2: Obtén una lista de todos los atletas del equipo de Gran Bretaña. Sólo obtendrás las filas para los atletas británicos. No especificaste como ordenarlos, así que no saldrán en orden alfabético. Sigue los siguientes pasos:

SELECT
*
FROM athletes
WHERE country = ‘Great Britain’

Misión 3: ¿Qué país tiene el promedio de atletas más pesado? Esto tomará todas las filas y las pondrá en grupos por país. Se abrirá una lista de los nombres de los países y el peso promedio de cada grupo. Esto lo puedes lograr así:

SELECT
country,AVG(WEIGHT)
FROM athletes
GROUP BY country

Misión 4: ¿En qué mes nacen más atletas olímpicos? Tal vez quieras probar una teoría astrológica sobre que el talento de los leos para el deporte. Desde aquí puedes ver el número de atletas olímpicos que nacieron en ese mes.

SELECT
MONTH(birthdate),COUNT(*)
FROM athletes
GROUP BY MONTH(birthdate)

Misión 5: Añade un nuevo atleta. Agrega un atleta a la tabla. Para insertar una fila, especifica las columnas que vas a añadir y el valor de cada uno.

INSERT
INTO athletes
(name,country,height,weight,gender)
VALUES (‘Andrew Leimdorfer’,’Great Britain’,180,74.8,’M’)

Misión 6: Ordena a todos los atletas en orden de estatura y peso; puede ser que notes algo muy extraño con el atleta canadiense Ian Warner.

SELECT
*
FROM athletes
WHERE gender = ‘M’
ORDER BY height/weight ASC

Misión 7: Si obtienes tus datos del portal london2012.com, pensarás que Ian Warner mide 5′ 7″ y pesa 160 kg. Lo más probable es que su peso fue marcado en libras. Vamos a arreglar esto.

UPDATE
athletes
SET weight = weight/2.2
WHERE name = ‘Ian Warner’

Misión 8: Borra a todos los atletas de Canadá y Estados Unidos.

DELETE
FROM athletes
WHERE country = ‘United States of America’ OR country = ‘Canada’;

Una vez que nos fijamos en  las operaciones para cambiar las bases de datos, seguro notas lo siguiente: verás que una consulta es como una oración y tiene reglas gramaticales. Tiene un «verbo» (¿Qué tipo de acción quiero?), un «objeto» (¿Qué tabla es la que quiero que haga la acción?) y «adverbios» opcionales (¿Cómo quiero hacer la acción?). Los «adverbios» incluyen detalles como «ordenar esta columna» y «sólo hacer esto para ciertas filas.»

Misión de bonus: Varias tablas y una breve muestra de JOIN

Es probable que haya mucho más datos que sólo los atletas. Para cada país, también puedes tener su bandera, su población y su ciudad capital; también tienes todos los eventos olímpicos y los atletas que participaron en ellos. Para cada evento, también tienes los resultados que obtuvieron: cuántas medallas y los resultados finales.

Si usaras Excel para depurar este tipo de bases de datos, sería una verdadera locura, ya que tendrías un montón de hojas de cálculo y con mucho esfuerzo lograrías hacer una referencia cruzada, o tendrías una mega-hoja de cálculo con columnas infinitas (las fuentes de datos gubernamentales usualmente aman las mega-hojas de cálculo).

Es posible que haya una hoja de cálculo donde cada fila es un atleta, y haya una larga lista de columnas llenas de una gran cantidad de información redundante y sin sentido, como:

name, country, birthdate, height, weight, gender, country_population, country_flag_url, country_gdp, event1, event1_date, event1_result, event2_date, event2_result, event3_date, event3_result, event4_date, event4_result, number_of_medals

Estas enormes bases de datos tienen muchas debilidades entre las que sobresalen:

Pierdes la capacidad de visualizar los datos. Cuando la información es tan grande, se vuelve un desastre

La estructura se vuelve muy poco flexible. Esto es casi una ley: en las mega hojas de cálculo, el número de columnas nunca es suficiente.

No tiene ningún sentido de las relaciones. Los atletas son una unidad aquí, pero hay otros. Hay países que tienen eventos (que pertenecen a los deportes), tienen resultados (que pertenecen a los eventos), que tienen atletas (que compiten en los eventos, que dan lugar a esos acontecimientos, y casi siempre pertenecen a los países). Estas relaciones probablemente serán la base para un montón de historias interesantes basadas en los datos, y la mega-hoja de cálculo hace un mal trabajo para contarlas.

El análisis es difícil. ¿Cómo puedes encontrar todos los atletas hombres que corren los 100 metros? Algunos de ellos podrían tener su tiempo en event1_result, otros en event2_result. Intenta (no lo creo) divertirte con los datos que están anidados; o si introduces manualmente cualquiera de estos datos, hay una buena probabilidad de que obtengas muchas  inconsistencias textuales como 100 metros, 100m de los hombres, Hombres y 100m.

SQL te permite mantener estas cosas en un montón de tablas separadas, pero utiliza conexiones lógicas entre ellos para que puedas trabajar con un gran conjunto de datos. Para combinar las tablas de este tipo, se utiliza JOIN.

Es posible crear una tabla para los atletas con la información básica, como la estatura y el peso; una tabla para eventos con detalles sobre dónde y cuándo se lleva a cabo y el récord mundial actual; una tabla para los países con información sobre cada país; así como una tabla de resultados en la que cada fila contiene un atleta, un evento, su resultado, y la medalla que ganaron (si los hay).

¡A continuación, te enseñamos como combinar temporalmente las tablas!

¿Quién ganó las medallas de oro el día de hoy?

SELECT
athletes.name, athletes.country, event.name
FROM athletes, results, events
WHERE athletes.id = results.athlete_id AND event.id = results.event_id
AND event.date = DATE(NOW()) AND results.medal = ‘Gold’

¿Cuántas medallas ha ganado cada país?

SELECT
countries.name, COUNT(*)
FROM athletes, countries, results, events
WHERE athletes.id = results.athlete_id AND event.id = results.event_id AND athletes.country_id = countries.id
AND results.medal IN (‘Gold’,’Silver’,’Bronze’)
GROUP BY countries.id

 

Flattr this!

]]>
http://es.schoolofdata.org/2013/11/27/sql-la-precuela-excel-vs-bases-de-datos/feed/ 2 678